- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Synchronization of Stochastic Two-layer Geophysical Flows
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-24-15,
author = {Yongqian Han },
title = {Synchronization of Stochastic Two-layer Geophysical Flows},
journal = {Journal of Partial Differential Equations},
year = {2011},
volume = {24},
number = {1},
pages = {15--36},
abstract = {
In this paper, the two-layer quasigeostrophic flow model under stochastic wind forcing is considered. It is shown that when the layer depth or density difference across the layers tends to zero, the dynamics on both layers synchronizes to an averaged geophysical flow model.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v24.n1.2}, url = {http://global-sci.org/intro/article_detail/jpde/5195.html} }
TY - JOUR
T1 - Synchronization of Stochastic Two-layer Geophysical Flows
AU - Yongqian Han
JO - Journal of Partial Differential Equations
VL - 1
SP - 15
EP - 36
PY - 2011
DA - 2011/02
SN - 24
DO - http://doi.org/10.4208/jpde.v24.n1.2
UR - https://global-sci.org/intro/article_detail/jpde/5195.html
KW - Stochastic flow models
KW - random dynamical systems
KW - synchronization
KW - stochastic PDEs
KW - geophysical and climate dynamics
AB -
In this paper, the two-layer quasigeostrophic flow model under stochastic wind forcing is considered. It is shown that when the layer depth or density difference across the layers tends to zero, the dynamics on both layers synchronizes to an averaged geophysical flow model.
Yongqian Han . (2011). Synchronization of Stochastic Two-layer Geophysical Flows.
Journal of Partial Differential Equations. 24 (1).
15-36.
doi:10.4208/jpde.v24.n1.2
Copy to clipboard