- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
In this paper, we study the inviscid limit problem for the scalar viscous conservation laws on half plane. We prove that if the solution of the corresponding inviscid equation on half plane is piecewise smooth with a single shock satisfying the entropy condition, then there exist solutions to the viscous conservation laws which converge to the inviscid solution away fromthe shock discontinuity and the boundary at a rate of ε^1 as the viscosity ε tends to zero.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v25.n2.4}, url = {http://global-sci.org/intro/article_detail/jpde/5181.html} }In this paper, we study the inviscid limit problem for the scalar viscous conservation laws on half plane. We prove that if the solution of the corresponding inviscid equation on half plane is piecewise smooth with a single shock satisfying the entropy condition, then there exist solutions to the viscous conservation laws which converge to the inviscid solution away fromthe shock discontinuity and the boundary at a rate of ε^1 as the viscosity ε tends to zero.