- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
On a Class of Neumann Boundary Value Equations Driven by a (p1, , Pn)-Laplacian Operator
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-25-21,
author = {Afrouzi , G. A.Heidarkhani , S.Hadjian , A. and Shakeri , S.},
title = {On a Class of Neumann Boundary Value Equations Driven by a (p1, , Pn)-Laplacian Operator},
journal = {Journal of Partial Differential Equations},
year = {2012},
volume = {25},
number = {1},
pages = {21--31},
abstract = {
In this paper we prove the existence of an open interval (λ' ,λ") for each λ in the interval a class of Neumann boundary value equations involving the (p_1,..., p_n)- Laplacian and depending on λ admits at least three solutions. Our main tool is a recent three critical points theorem of Averna and Bonanno [Topol. Methods Nonlinear Anal. [1] (2003) 93-103].
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v25.n1.2}, url = {http://global-sci.org/intro/article_detail/jpde/5172.html} }
TY - JOUR
T1 - On a Class of Neumann Boundary Value Equations Driven by a (p1, , Pn)-Laplacian Operator
AU - Afrouzi , G. A.
AU - Heidarkhani , S.
AU - Hadjian , A.
AU - Shakeri , S.
JO - Journal of Partial Differential Equations
VL - 1
SP - 21
EP - 31
PY - 2012
DA - 2012/03
SN - 25
DO - http://doi.org/10.4208/jpde.v25.n1.2
UR - https://global-sci.org/intro/article_detail/jpde/5172.html
KW - (p_1
KW - ...
KW - p_n)-Laplacian
KW - Neumann problem
KW - three solutions
KW - critical points
KW - multiplicity results
AB -
In this paper we prove the existence of an open interval (λ' ,λ") for each λ in the interval a class of Neumann boundary value equations involving the (p_1,..., p_n)- Laplacian and depending on λ admits at least three solutions. Our main tool is a recent three critical points theorem of Averna and Bonanno [Topol. Methods Nonlinear Anal. [1] (2003) 93-103].
Afrouzi , G. A.Heidarkhani , S.Hadjian , A. and Shakeri , S.. (2012). On a Class of Neumann Boundary Value Equations Driven by a (p1, , Pn)-Laplacian Operator.
Journal of Partial Differential Equations. 25 (1).
21-31.
doi:10.4208/jpde.v25.n1.2
Copy to clipboard