- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
We considered the Cauchy problem for the fractional wave-diffusion equation $$D^αu-Δ|u|^{m-1}u+(-Δ)^{β/2}D^γ|u|^{l-1}u=h(x,t)|u|^p+f(x,t)$$ with given initial data and where p > 1, 1 < α < 2, 0 < β < 2, 0 < γ < 1. Nonexistence results and necessary conditions for global existence are established by means of the test function method. This results extend previous works.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v25.n1.1}, url = {http://global-sci.org/intro/article_detail/jpde/5171.html} }We considered the Cauchy problem for the fractional wave-diffusion equation $$D^αu-Δ|u|^{m-1}u+(-Δ)^{β/2}D^γ|u|^{l-1}u=h(x,t)|u|^p+f(x,t)$$ with given initial data and where p > 1, 1 < α < 2, 0 < β < 2, 0 < γ < 1. Nonexistence results and necessary conditions for global existence are established by means of the test function method. This results extend previous works.