- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
Using variational methods, we prove the existence of a nontrivial weak solution for the problem \begin{align*} \left\{ \begin{array}{ll} -\sum_{i=1}^N\partial_{x_i}\Big(|\partial_{x_i}u|^{p_i-2}\partial_{x_i}u\Big) =\lambda a(x)|u|^{q(x)-2}u+|u|^{p^\ast-2}u, & \text{ in } \Omega, \\ u = 0, & \text{ in } \partial\Omega, \end{array} \right. \end{align*} where $\Omega \subset \mathbb{R}^N$ ($N \geq 3$) is a bounded domain with smooth boundary $\partial\Omega$, $2 \leq p_i < N$, $i = \overline{1, N}$, $q: \overline \Omega \to (1, p^\ast)$ is a continuous function, $p^\ast=\frac{N}{\sum_{i=1}^N \frac{1}{p_i}-1}$ is the critical exponent for this class of problem, and $\lambda$ is a parameter.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v26.n3.2}, url = {http://global-sci.org/intro/article_detail/jpde/5162.html} }Using variational methods, we prove the existence of a nontrivial weak solution for the problem \begin{align*} \left\{ \begin{array}{ll} -\sum_{i=1}^N\partial_{x_i}\Big(|\partial_{x_i}u|^{p_i-2}\partial_{x_i}u\Big) =\lambda a(x)|u|^{q(x)-2}u+|u|^{p^\ast-2}u, & \text{ in } \Omega, \\ u = 0, & \text{ in } \partial\Omega, \end{array} \right. \end{align*} where $\Omega \subset \mathbb{R}^N$ ($N \geq 3$) is a bounded domain with smooth boundary $\partial\Omega$, $2 \leq p_i < N$, $i = \overline{1, N}$, $q: \overline \Omega \to (1, p^\ast)$ is a continuous function, $p^\ast=\frac{N}{\sum_{i=1}^N \frac{1}{p_i}-1}$ is the critical exponent for this class of problem, and $\lambda$ is a parameter.