- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Existence and Asymptotic Behavior of Boundary Blow-up Weak Solutions for Problems Involving the p-Laplacian
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-26-172,
author = {Belhaj Rhouma , NedraDrissi , Amor and Sayeb , Wahid},
title = {Existence and Asymptotic Behavior of Boundary Blow-up Weak Solutions for Problems Involving the p-Laplacian},
journal = {Journal of Partial Differential Equations},
year = {2013},
volume = {26},
number = {2},
pages = {172--192},
abstract = {
Let D⊂R^N(N ≥ 3), be a smooth bounded domain with smooth boundary ∂D. In this paper, the existence of boundary blow-upweak solutions for the quasilinear elliptic equation Δ_pu=λk(x) f (u) in D(λ > 0 and 1 < p < N), is obtained under new conditions on k. We give also asymptotic behavior near the boundary of such solutions.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v26.n2.6}, url = {http://global-sci.org/intro/article_detail/jpde/5160.html} }
TY - JOUR
T1 - Existence and Asymptotic Behavior of Boundary Blow-up Weak Solutions for Problems Involving the p-Laplacian
AU - Belhaj Rhouma , Nedra
AU - Drissi , Amor
AU - Sayeb , Wahid
JO - Journal of Partial Differential Equations
VL - 2
SP - 172
EP - 192
PY - 2013
DA - 2013/06
SN - 26
DO - http://doi.org/10.4208/jpde.v26.n2.6
UR - https://global-sci.org/intro/article_detail/jpde/5160.html
KW - p-Laplacian operator
KW - sub and supersolution
KW - blow-up solutions
KW - comparison principle
AB -
Let D⊂R^N(N ≥ 3), be a smooth bounded domain with smooth boundary ∂D. In this paper, the existence of boundary blow-upweak solutions for the quasilinear elliptic equation Δ_pu=λk(x) f (u) in D(λ > 0 and 1 < p < N), is obtained under new conditions on k. We give also asymptotic behavior near the boundary of such solutions.
Belhaj Rhouma , NedraDrissi , Amor and Sayeb , Wahid. (2013). Existence and Asymptotic Behavior of Boundary Blow-up Weak Solutions for Problems Involving the p-Laplacian.
Journal of Partial Differential Equations. 26 (2).
172-192.
doi:10.4208/jpde.v26.n2.6
Copy to clipboard