- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
A linearized and conservative finite difference scheme is presented for the initial-boundary value problem of the Klein-Gordon-Zakharov (KGZ) equation. The new scheme is also decoupled in computation, whichmeans that no iteration is needed and parallel computation can be used, so it is expected to be more efficient in implementation. The existence of the difference solution is proved by Browder fixed point theorem. Besides the standard energy method, in order to overcome the difficulty in obtaining a priori estimate, an induction argument is used to prove that the new scheme is uniquely solvable and second order convergent for U in the discrete L^∞- norm, and for N in the discrete L^2-norm, respectively, where U and N are the numerical solutions of the KGZ equation. Numerical results verify the theoretical analysis.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v26.n2.2}, url = {http://global-sci.org/intro/article_detail/jpde/5156.html} }A linearized and conservative finite difference scheme is presented for the initial-boundary value problem of the Klein-Gordon-Zakharov (KGZ) equation. The new scheme is also decoupled in computation, whichmeans that no iteration is needed and parallel computation can be used, so it is expected to be more efficient in implementation. The existence of the difference solution is proved by Browder fixed point theorem. Besides the standard energy method, in order to overcome the difficulty in obtaining a priori estimate, an induction argument is used to prove that the new scheme is uniquely solvable and second order convergent for U in the discrete L^∞- norm, and for N in the discrete L^2-norm, respectively, where U and N are the numerical solutions of the KGZ equation. Numerical results verify the theoretical analysis.