- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Jacobi Elliptic Numerical Solutions for the Time Fractional Variant Boussinesq Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-27-189,
author = {Gepreel , Khaled A.},
title = {Jacobi Elliptic Numerical Solutions for the Time Fractional Variant Boussinesq Equations},
journal = {Journal of Partial Differential Equations},
year = {2014},
volume = {27},
number = {3},
pages = {189--199},
abstract = { The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct the approximate solutions for nonlinear variant Boussinesq equations with respect to time fractional derivative. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v27.n3.1},
url = {http://global-sci.org/intro/article_detail/jpde/5136.html}
}
TY - JOUR
T1 - Jacobi Elliptic Numerical Solutions for the Time Fractional Variant Boussinesq Equations
AU - Gepreel , Khaled A.
JO - Journal of Partial Differential Equations
VL - 3
SP - 189
EP - 199
PY - 2014
DA - 2014/09
SN - 27
DO - http://doi.org/10.4208/jpde.v27.n3.1
UR - https://global-sci.org/intro/article_detail/jpde/5136.html
KW - Homotopy perturbation method
KW - fractional calculus
KW - nonlinear time fractional variant Boussinesq equations
AB - The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct the approximate solutions for nonlinear variant Boussinesq equations with respect to time fractional derivative. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.
Gepreel , Khaled A.. (2014). Jacobi Elliptic Numerical Solutions for the Time Fractional Variant Boussinesq Equations.
Journal of Partial Differential Equations. 27 (3).
189-199.
doi:10.4208/jpde.v27.n3.1
Copy to clipboard