- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Relaxation Limit for Aw-Rascle System
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-27-166,
author = {De La Cruzguerrero , Richard A.Juajibioy , Juan C. and Rendón , Leonardo},
title = {Relaxation Limit for Aw-Rascle System},
journal = {Journal of Partial Differential Equations},
year = {2014},
volume = {27},
number = {2},
pages = {166--175},
abstract = { We study the relaxation limit for the Aw-Rascle system of traffic flow. For thiswe apply the theory of invariant regions and the compensated compactnessmethod to get global existence of Cauchy problem for a particular Aw-Rascle system with source, where the source is the relaxation term, and we show the convergence of this solutions to the equilibrium state.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v27.n2.7},
url = {http://global-sci.org/intro/article_detail/jpde/5134.html}
}
TY - JOUR
T1 - Relaxation Limit for Aw-Rascle System
AU - De La Cruzguerrero , Richard A.
AU - Juajibioy , Juan C.
AU - Rendón , Leonardo
JO - Journal of Partial Differential Equations
VL - 2
SP - 166
EP - 175
PY - 2014
DA - 2014/06
SN - 27
DO - http://doi.org/10.4208/jpde.v27.n2.7
UR - https://global-sci.org/intro/article_detail/jpde/5134.html
KW - Aw-Rascle system
KW - relaxation term
KW - compensated compactness
KW - invariant regions
AB - We study the relaxation limit for the Aw-Rascle system of traffic flow. For thiswe apply the theory of invariant regions and the compensated compactnessmethod to get global existence of Cauchy problem for a particular Aw-Rascle system with source, where the source is the relaxation term, and we show the convergence of this solutions to the equilibrium state.
De La Cruzguerrero , Richard A.Juajibioy , Juan C. and Rendón , Leonardo. (2014). Relaxation Limit for Aw-Rascle System.
Journal of Partial Differential Equations. 27 (2).
166-175.
doi:10.4208/jpde.v27.n2.7
Copy to clipboard