- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Existence and Nonexistence of Weak Positive Solution for a Class of p-Laplacian Systems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-27-158,
author = {Akrout , Kamel and Guefaifia , Rafik},
title = {Existence and Nonexistence of Weak Positive Solution for a Class of p-Laplacian Systems},
journal = {Journal of Partial Differential Equations},
year = {2014},
volume = {27},
number = {2},
pages = {158--165},
abstract = {In this work, we are interested to obtain some result of existence and nonexistence of positive weak solution for the following p-Laplacian system $$\begin{equation}\begin{case}-Δ_{pi}u_i=λ_if_i (u_1,…,u_m),\qquad in\;Ω,\;\;i=1,…,m,\\ui=0,\qquad on ∂Ω,\;\;∀i=1,…,m,\end{case}\end{equation}$$ where Δ_{pi}z=div(|∇z|^{pi-2}∇z), pi ≥ 1,λ_i,1 ≤ i ≤ m are a positive parameter, and Ω is a bounded domain in \mathbb{R}^N with smooth boundary ∂Ω. The proof of the main results is based to the method of sub-supersolutions.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v27.n2.6},
url = {http://global-sci.org/intro/article_detail/jpde/5133.html}
}
TY - JOUR
T1 - Existence and Nonexistence of Weak Positive Solution for a Class of p-Laplacian Systems
AU - Akrout , Kamel
AU - Guefaifia , Rafik
JO - Journal of Partial Differential Equations
VL - 2
SP - 158
EP - 165
PY - 2014
DA - 2014/06
SN - 27
DO - http://doi.org/10.4208/jpde.v27.n2.6
UR - https://global-sci.org/intro/article_detail/jpde/5133.html
KW - Positive solutions
KW - sub-supersolutions
KW - elliptic systems
AB - In this work, we are interested to obtain some result of existence and nonexistence of positive weak solution for the following p-Laplacian system $$\begin{equation}\begin{case}-Δ_{pi}u_i=λ_if_i (u_1,…,u_m),\qquad in\;Ω,\;\;i=1,…,m,\\ui=0,\qquad on ∂Ω,\;\;∀i=1,…,m,\end{case}\end{equation}$$ where Δ_{pi}z=div(|∇z|^{pi-2}∇z), pi ≥ 1,λ_i,1 ≤ i ≤ m are a positive parameter, and Ω is a bounded domain in \mathbb{R}^N with smooth boundary ∂Ω. The proof of the main results is based to the method of sub-supersolutions.
Akrout , Kamel and Guefaifia , Rafik. (2014). Existence and Nonexistence of Weak Positive Solution for a Class of p-Laplacian Systems.
Journal of Partial Differential Equations. 27 (2).
158-165.
doi:10.4208/jpde.v27.n2.6
Copy to clipboard