- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Multiple Positive Solutions for Semilinear Elliptic Equations Involving Subcritical Nonlinearities in RN
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-27-74,
author = {Khademloo , Somayeh and Mohsenhi , Rahelh},
title = {Multiple Positive Solutions for Semilinear Elliptic Equations Involving Subcritical Nonlinearities in RN},
journal = {Journal of Partial Differential Equations},
year = {2014},
volume = {27},
number = {1},
pages = {74--94},
abstract = { In this paper, we study how the shape of the graph of a(z) affects on the number of positive solutions of $$-\Delta\upsilon+μ b(z)\upsilon^{p-1}+λ h(z)\upsilon^{q-1}, \qquad\;in\; \mathbb{R}^N.\qquad (0.1)$$ We prove for large enough λ,μ › 0, there exist at least k+1 positive solutions of the this semilinear elliptic equations where 1 ≤ q ‹ 2 ‹ p ‹ 2*|=2N/(N-2) for N ≥ 3.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v27.n1.5},
url = {http://global-sci.org/intro/article_detail/jpde/5127.html}
}
TY - JOUR
T1 - Multiple Positive Solutions for Semilinear Elliptic Equations Involving Subcritical Nonlinearities in RN
AU - Khademloo , Somayeh
AU - Mohsenhi , Rahelh
JO - Journal of Partial Differential Equations
VL - 1
SP - 74
EP - 94
PY - 2014
DA - 2014/03
SN - 27
DO - http://doi.org/10.4208/jpde.v27.n1.5
UR - https://global-sci.org/intro/article_detail/jpde/5127.html
KW - Sobolev spaces
KW - semilinear elliptic equations
KW - critical exponent
KW - Nehari manifold
KW - Palais-Smale condition
AB - In this paper, we study how the shape of the graph of a(z) affects on the number of positive solutions of $$-\Delta\upsilon+μ b(z)\upsilon^{p-1}+λ h(z)\upsilon^{q-1}, \qquad\;in\; \mathbb{R}^N.\qquad (0.1)$$ We prove for large enough λ,μ › 0, there exist at least k+1 positive solutions of the this semilinear elliptic equations where 1 ≤ q ‹ 2 ‹ p ‹ 2*|=2N/(N-2) for N ≥ 3.
Khademloo , Somayeh and Mohsenhi , Rahelh. (2014). Multiple Positive Solutions for Semilinear Elliptic Equations Involving Subcritical Nonlinearities in RN.
Journal of Partial Differential Equations. 27 (1).
74-94.
doi:10.4208/jpde.v27.n1.5
Copy to clipboard