- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Existence of Renormalized Solutions for Nonlinear Parabolic Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-27-28,
author = {Akdim , YoussefBenkirane , A.EL Moumni , M. and Redwane , Hicham},
title = {Existence of Renormalized Solutions for Nonlinear Parabolic Equations},
journal = {Journal of Partial Differential Equations},
year = {2014},
volume = {27},
number = {1},
pages = {28--49},
abstract = { We give an existence result of a renormalized solution for a class of nonlinear parabolic equations $$\frac{\partial b(x,u)}{\partial t}-div(a(x,t,u,\nabla u))+g(x,t,u,\nabla u)+H(x,t,\nabla u)=f,\qquad in\; Q_T,$$ where the right side belongs to $L^{p'}(0,T;W^{-1,p'}(Ω))$ and where b(x,u) is unbounded function of u and where $-div(a(x,t,u,∇u))$ is a Leray-Lions type operatorwith growth $|∇u|^{p-1}$ in ∇u. The critical growth condition on g is with respect to ∇u and no growth condition with respect to u, while the function $H(x,t,∇u)$ grows as $|∇u|^{p-1}$.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v27.n1.2},
url = {http://global-sci.org/intro/article_detail/jpde/5124.html}
}
TY - JOUR
T1 - Existence of Renormalized Solutions for Nonlinear Parabolic Equations
AU - Akdim , Youssef
AU - Benkirane , A.
AU - EL Moumni , M.
AU - Redwane , Hicham
JO - Journal of Partial Differential Equations
VL - 1
SP - 28
EP - 49
PY - 2014
DA - 2014/03
SN - 27
DO - http://doi.org/10.4208/jpde.v27.n1.2
UR - https://global-sci.org/intro/article_detail/jpde/5124.html
KW - Nonlinear parabolic equations
KW - renormalized solutions
KW - Sobolev spaces
AB - We give an existence result of a renormalized solution for a class of nonlinear parabolic equations $$\frac{\partial b(x,u)}{\partial t}-div(a(x,t,u,\nabla u))+g(x,t,u,\nabla u)+H(x,t,\nabla u)=f,\qquad in\; Q_T,$$ where the right side belongs to $L^{p'}(0,T;W^{-1,p'}(Ω))$ and where b(x,u) is unbounded function of u and where $-div(a(x,t,u,∇u))$ is a Leray-Lions type operatorwith growth $|∇u|^{p-1}$ in ∇u. The critical growth condition on g is with respect to ∇u and no growth condition with respect to u, while the function $H(x,t,∇u)$ grows as $|∇u|^{p-1}$.
Akdim , YoussefBenkirane , A.EL Moumni , M. and Redwane , Hicham. (2014). Existence of Renormalized Solutions for Nonlinear Parabolic Equations.
Journal of Partial Differential Equations. 27 (1).
28-49.
doi:10.4208/jpde.v27.n1.2
Copy to clipboard