- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Random Attractor for the Nonclassical Diffusion Equation with Fading Memory
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-28-253,
author = {Cheng , Shuilin},
title = {Random Attractor for the Nonclassical Diffusion Equation with Fading Memory},
journal = {Journal of Partial Differential Equations},
year = {2015},
volume = {28},
number = {3},
pages = {253--268},
abstract = { In this paper,we consider the stochastic nonclassical diffusion equationwith fading memory on a bounded domain. By decomposition of the solution operator, we give the necessary condition of asymptotic smoothness of the solution to the initial boundary value problem, and then we prove the existence of a random attractor in the space $M_1=D(A^{\frac{1}{2}}) × L^2_μ(R^+, D(A^{\frac{1}{2}}))$, where A=-Δ with Dirichlet boundary condition.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v28.n3.4},
url = {http://global-sci.org/intro/article_detail/jpde/5113.html}
}
TY - JOUR
T1 - Random Attractor for the Nonclassical Diffusion Equation with Fading Memory
AU - Cheng , Shuilin
JO - Journal of Partial Differential Equations
VL - 3
SP - 253
EP - 268
PY - 2015
DA - 2015/09
SN - 28
DO - http://doi.org/10.4208/jpde.v28.n3.4
UR - https://global-sci.org/intro/article_detail/jpde/5113.html
KW - Stochastic nonclassical diffusion equations
KW - fading memory
KW - random attractor
AB - In this paper,we consider the stochastic nonclassical diffusion equationwith fading memory on a bounded domain. By decomposition of the solution operator, we give the necessary condition of asymptotic smoothness of the solution to the initial boundary value problem, and then we prove the existence of a random attractor in the space $M_1=D(A^{\frac{1}{2}}) × L^2_μ(R^+, D(A^{\frac{1}{2}}))$, where A=-Δ with Dirichlet boundary condition.
Cheng , Shuilin. (2015). Random Attractor for the Nonclassical Diffusion Equation with Fading Memory.
Journal of Partial Differential Equations. 28 (3).
253-268.
doi:10.4208/jpde.v28.n3.4
Copy to clipboard