- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
A Remark on the Level Sets of the Graph of Harmonic Functions Bounded by Two Circles in Parallel Planes
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-28-197,
author = {Kong , Shengli and Xu , Jinju},
title = {A Remark on the Level Sets of the Graph of Harmonic Functions Bounded by Two Circles in Parallel Planes},
journal = {Journal of Partial Differential Equations},
year = {2015},
volume = {28},
number = {3},
pages = {197--207},
abstract = { In this paper,we find two auxiliary functions andmake use of themaximum principle to study the level sets of harmonic function defined on a convex ring with homogeneous Dirichlet boundary conditions in $\mathbb{R}^2$. In higher dimensions, we also have a similar result to Jagy's.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v28.n3.1},
url = {http://global-sci.org/intro/article_detail/jpde/5110.html}
}
TY - JOUR
T1 - A Remark on the Level Sets of the Graph of Harmonic Functions Bounded by Two Circles in Parallel Planes
AU - Kong , Shengli
AU - Xu , Jinju
JO - Journal of Partial Differential Equations
VL - 3
SP - 197
EP - 207
PY - 2015
DA - 2015/09
SN - 28
DO - http://doi.org/10.4208/jpde.v28.n3.1
UR - https://global-sci.org/intro/article_detail/jpde/5110.html
KW - Harmonic function
KW - maximum principle
KW - level set
AB - In this paper,we find two auxiliary functions andmake use of themaximum principle to study the level sets of harmonic function defined on a convex ring with homogeneous Dirichlet boundary conditions in $\mathbb{R}^2$. In higher dimensions, we also have a similar result to Jagy's.
Kong , Shengli and Xu , Jinju. (2015). A Remark on the Level Sets of the Graph of Harmonic Functions Bounded by Two Circles in Parallel Planes.
Journal of Partial Differential Equations. 28 (3).
197-207.
doi:10.4208/jpde.v28.n3.1
Copy to clipboard