- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
A Singular Trudinger-Moser Inequality in Hyperbolic Space
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-28-39,
author = {Zhu , Xiaobao},
title = {A Singular Trudinger-Moser Inequality in Hyperbolic Space},
journal = {Journal of Partial Differential Equations},
year = {2015},
volume = {28},
number = {1},
pages = {39--46},
abstract = { In this paper, we establish a singular Trudinger-Moser inequality for the whole hyperbolic space $$H^n: sup_{u∈W^{1,n}(H^n),∫_{H^n}|∇_H^nu|^ndμ ≤ 1}∫_{H^n}\frac{e^{α|u|\frac{n}{n-1}}-Σ^{n-2}_{k=0}\frac{α^k|u|^\frac{nk}{n-1}}{k!}}{ρ^β}dμ‹∞ ⇔ \frac{α}{α_n}+\frac{β}{n} ≤ 1,$$ where α>0,α ∈ [0,n), ρ and dμ are the distance function and volume element of $H^n$ respectively.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v28.n1.5},
url = {http://global-sci.org/intro/article_detail/jpde/5101.html}
}
TY - JOUR
T1 - A Singular Trudinger-Moser Inequality in Hyperbolic Space
AU - Zhu , Xiaobao
JO - Journal of Partial Differential Equations
VL - 1
SP - 39
EP - 46
PY - 2015
DA - 2015/03
SN - 28
DO - http://doi.org/10.4208/jpde.v28.n1.5
UR - https://global-sci.org/intro/article_detail/jpde/5101.html
KW - Singular Trudinger-Moser inequlity
KW - hyperbolic space
AB - In this paper, we establish a singular Trudinger-Moser inequality for the whole hyperbolic space $$H^n: sup_{u∈W^{1,n}(H^n),∫_{H^n}|∇_H^nu|^ndμ ≤ 1}∫_{H^n}\frac{e^{α|u|\frac{n}{n-1}}-Σ^{n-2}_{k=0}\frac{α^k|u|^\frac{nk}{n-1}}{k!}}{ρ^β}dμ‹∞ ⇔ \frac{α}{α_n}+\frac{β}{n} ≤ 1,$$ where α>0,α ∈ [0,n), ρ and dμ are the distance function and volume element of $H^n$ respectively.
Zhu , Xiaobao. (2015). A Singular Trudinger-Moser Inequality in Hyperbolic Space.
Journal of Partial Differential Equations. 28 (1).
39-46.
doi:10.4208/jpde.v28.n1.5
Copy to clipboard