- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
On a Lagrangian Formulation of the Incompressible Euler Equation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-29-320,
author = {Inci , Hasan},
title = {On a Lagrangian Formulation of the Incompressible Euler Equation},
journal = {Journal of Partial Differential Equations},
year = {2015},
volume = {29},
number = {4},
pages = {320--359},
abstract = { In this paper we show that the incompressible Euler equation on the Sobolev space $H^s(\mathbb{R}^n), s › n ⁄ 2+1$, can be expressed in Lagrangian coordinates as a geodesic equation on an infinite dimensional manifold. Moreover the Christoffel map describing the geodesic equation is real analytic. The dynamics in Lagrangian coordinates is described on the group of volume preserving diffeomorphisms, which is an analytic submanifold of the whole diffeomorphism group. Furthermore it is shown that a Sobolev class vector field integrates to a curve on the diffeomorphism group.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v29.n4.5},
url = {http://global-sci.org/intro/article_detail/jpde/5096.html}
}
TY - JOUR
T1 - On a Lagrangian Formulation of the Incompressible Euler Equation
AU - Inci , Hasan
JO - Journal of Partial Differential Equations
VL - 4
SP - 320
EP - 359
PY - 2015
DA - 2015/03
SN - 29
DO - http://doi.org/10.4208/jpde.v29.n4.5
UR - https://global-sci.org/intro/article_detail/jpde/5096.html
KW - Euler equation
KW - diffeomorphism group
AB - In this paper we show that the incompressible Euler equation on the Sobolev space $H^s(\mathbb{R}^n), s › n ⁄ 2+1$, can be expressed in Lagrangian coordinates as a geodesic equation on an infinite dimensional manifold. Moreover the Christoffel map describing the geodesic equation is real analytic. The dynamics in Lagrangian coordinates is described on the group of volume preserving diffeomorphisms, which is an analytic submanifold of the whole diffeomorphism group. Furthermore it is shown that a Sobolev class vector field integrates to a curve on the diffeomorphism group.
Inci , Hasan. (2015). On a Lagrangian Formulation of the Incompressible Euler Equation.
Journal of Partial Differential Equations. 29 (4).
320-359.
doi:10.4208/jpde.v29.n4.5
Copy to clipboard