- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
A Pohožaev Identity and Critical Exponents of Some Complex Hessian Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-29-175,
author = {Li , Chi},
title = {A Pohožaev Identity and Critical Exponents of Some Complex Hessian Equations},
journal = {Journal of Partial Differential Equations},
year = {2016},
volume = {29},
number = {3},
pages = {175--194},
abstract = { In this paper, we prove some sharp non-existence results for Dirichlet problems of complex Hessian equations. In particular, we consider a complex Monge-Ampère equation which is a local version of the equation of Kähler-Einstein metric. The non-existence results are proved using the Pohožaev method. We also prove existence results for radially symmetric solutions. Themain difference of the complex case with the real case is that we don't know if a priori radially symmetric property holds in the complex case.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v29.n3.2},
url = {http://global-sci.org/intro/article_detail/jpde/5087.html}
}
TY - JOUR
T1 - A Pohožaev Identity and Critical Exponents of Some Complex Hessian Equations
AU - Li , Chi
JO - Journal of Partial Differential Equations
VL - 3
SP - 175
EP - 194
PY - 2016
DA - 2016/09
SN - 29
DO - http://doi.org/10.4208/jpde.v29.n3.2
UR - https://global-sci.org/intro/article_detail/jpde/5087.html
KW - Pohožaev identity
KW - critical exponents
KW - complex Hessian equations
AB - In this paper, we prove some sharp non-existence results for Dirichlet problems of complex Hessian equations. In particular, we consider a complex Monge-Ampère equation which is a local version of the equation of Kähler-Einstein metric. The non-existence results are proved using the Pohožaev method. We also prove existence results for radially symmetric solutions. Themain difference of the complex case with the real case is that we don't know if a priori radially symmetric property holds in the complex case.
Li , Chi. (2016). A Pohožaev Identity and Critical Exponents of Some Complex Hessian Equations.
Journal of Partial Differential Equations. 29 (3).
175-194.
doi:10.4208/jpde.v29.n3.2
Copy to clipboard