- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
A Multiplicity Result for Some Integro-differential Biharmonic Equation in R4
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-29-102,
author = {Aouaoui , Sami},
title = {A Multiplicity Result for Some Integro-differential Biharmonic Equation in R4},
journal = {Journal of Partial Differential Equations},
year = {2016},
volume = {29},
number = {2},
pages = {102--115},
abstract = { In this paper, we prove the existence of at least three nontrivial solutions for some biharmonic elliptic equation involving an integral term. The nonlinear term exhibits an exponential growth at infinity. Our method consists of a combination between variational tools and iterative technique.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v29.n2.2},
url = {http://global-sci.org/intro/article_detail/jpde/5082.html}
}
TY - JOUR
T1 - A Multiplicity Result for Some Integro-differential Biharmonic Equation in R4
AU - Aouaoui , Sami
JO - Journal of Partial Differential Equations
VL - 2
SP - 102
EP - 115
PY - 2016
DA - 2016/07
SN - 29
DO - http://doi.org/10.4208/jpde.v29.n2.2
UR - https://global-sci.org/intro/article_detail/jpde/5082.html
KW - Integro-differential
KW - exponential growth
KW - iterative scheme
KW - multiplicity
KW - radial solution
KW - nonradial solution
KW - Adams inequality
KW - principle of symmetric criticality
AB - In this paper, we prove the existence of at least three nontrivial solutions for some biharmonic elliptic equation involving an integral term. The nonlinear term exhibits an exponential growth at infinity. Our method consists of a combination between variational tools and iterative technique.
Aouaoui , Sami. (2016). A Multiplicity Result for Some Integro-differential Biharmonic Equation in R4.
Journal of Partial Differential Equations. 29 (2).
102-115.
doi:10.4208/jpde.v29.n2.2
Copy to clipboard