- Journal Home
- Volume 38 - 2025
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
The incompressible limit of nonisentropic ideal magnetohydrodynamic equations with general initial data in the whole space $\mathbb{R}^3$ is proved in this paper. The uniform estimates of solutions with respect to the Mach number are obtained by using energy estimate. Strong convergence results of the smooth solutions are established by using Strichartz’s estimates in the whole space.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v38.n1.6}, url = {http://global-sci.org/intro/article_detail/jpde/23954.html} }The incompressible limit of nonisentropic ideal magnetohydrodynamic equations with general initial data in the whole space $\mathbb{R}^3$ is proved in this paper. The uniform estimates of solutions with respect to the Mach number are obtained by using energy estimate. Strong convergence results of the smooth solutions are established by using Strichartz’s estimates in the whole space.