- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
Let $Ω$ be a smooth bounded domian in $\mathbb{R}^2$ , $H^1_0 (Ω)$ be the standard Sobolev space, and $λ_f (Ω)$ be the first weighted eigenvalue of the Laplacian, namely, $$\lambda_f(\Omega)=\inf\limits_{u\in H^1_0(\Omega),\int_{\Omega}u^2{\rm dx}=1}\int_{\Omega}|\nabla u|^2f{\rm dx},$$where $f$ is a smooth positive function on $Ω.$ In this paper, using blow-up analysis, we prove$$\sup\limits_{u\in H^1_0(\Omega),\int_{\Omega}|\nabla u|^2f{\rm dx}\le 1}\int_{\Omega}e^{4\pi fu^2(1+\alpha||u||^2_2)}{\rm dx}<+\infty$$for any $0≤α<λ_f (Ω).$ Furthermore, extremal functions for the above inequality exist when $α>0$ is chosen sufficiently small.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v37.n4.3}, url = {http://global-sci.org/intro/article_detail/jpde/23688.html} }Let $Ω$ be a smooth bounded domian in $\mathbb{R}^2$ , $H^1_0 (Ω)$ be the standard Sobolev space, and $λ_f (Ω)$ be the first weighted eigenvalue of the Laplacian, namely, $$\lambda_f(\Omega)=\inf\limits_{u\in H^1_0(\Omega),\int_{\Omega}u^2{\rm dx}=1}\int_{\Omega}|\nabla u|^2f{\rm dx},$$where $f$ is a smooth positive function on $Ω.$ In this paper, using blow-up analysis, we prove$$\sup\limits_{u\in H^1_0(\Omega),\int_{\Omega}|\nabla u|^2f{\rm dx}\le 1}\int_{\Omega}e^{4\pi fu^2(1+\alpha||u||^2_2)}{\rm dx}<+\infty$$for any $0≤α<λ_f (Ω).$ Furthermore, extremal functions for the above inequality exist when $α>0$ is chosen sufficiently small.