- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Blow-Up of Solution and Energy Decay for a Quasilinear Parabolic Problem
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-37-263,
author = {Li , Fang and Zhang , Jingjing},
title = {Blow-Up of Solution and Energy Decay for a Quasilinear Parabolic Problem},
journal = {Journal of Partial Differential Equations},
year = {2024},
volume = {37},
number = {3},
pages = {263--277},
abstract = {
In this paper, we obtain the blow-up result of solutions and some general decay rates for a quasilinear parabolic equation with viscoelastic terms $$A(t)|u_{t}|^{m-2}u_{t}-\Delta u+\int_0^{t}g(t-s)\Delta u(x,s){\rm d}s=|u|^{p-2}u\log |u|.$$ Due to the presence of the log source term, it is not possible to use the source term to dominate the term $A(t)|u_{t}|^{m-2}u_{t}$. To bypass this difficulty, we build up inverse Hölder-like inequality and then apply differential inequality argument to prove the solution blows up in finite time. In addition, we can also give a decay rate under a general assumption on the relaxation functions satisfying $g'\leq -\xi(t)H(g(t)),~H(t)=t^\nu,~t\geq 0,~\nu>1$. This improves the existing results.
},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v37.n3.3},
url = {http://global-sci.org/intro/article_detail/jpde/23342.html}
}
TY - JOUR
T1 - Blow-Up of Solution and Energy Decay for a Quasilinear Parabolic Problem
AU - Li , Fang
AU - Zhang , Jingjing
JO - Journal of Partial Differential Equations
VL - 3
SP - 263
EP - 277
PY - 2024
DA - 2024/08
SN - 37
DO - http://doi.org/10.4208/jpde.v37.n3.3
UR - https://global-sci.org/intro/article_detail/jpde/23342.html
KW - Viscoelastic term, blow up, decay estimate.
AB -
In this paper, we obtain the blow-up result of solutions and some general decay rates for a quasilinear parabolic equation with viscoelastic terms $$A(t)|u_{t}|^{m-2}u_{t}-\Delta u+\int_0^{t}g(t-s)\Delta u(x,s){\rm d}s=|u|^{p-2}u\log |u|.$$ Due to the presence of the log source term, it is not possible to use the source term to dominate the term $A(t)|u_{t}|^{m-2}u_{t}$. To bypass this difficulty, we build up inverse Hölder-like inequality and then apply differential inequality argument to prove the solution blows up in finite time. In addition, we can also give a decay rate under a general assumption on the relaxation functions satisfying $g'\leq -\xi(t)H(g(t)),~H(t)=t^\nu,~t\geq 0,~\nu>1$. This improves the existing results.
Li , Fang and Zhang , Jingjing. (2024). Blow-Up of Solution and Energy Decay for a Quasilinear Parabolic Problem.
Journal of Partial Differential Equations. 37 (3).
263-277.
doi:10.4208/jpde.v37.n3.3
Copy to clipboard