- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
We are concerned with the following quasilinear wave equation involving variable sources and supercritical damping: $$u_{tt}-{\rm div}(|\nabla u|^{p(x)-2}\nabla u)+|u_t|^{m-2}u_t=|u|^{q(x)-2}u.$$ Generally speaking, when one tries to use the classical multiplier method to analyze the asymptotic behavior of solutions, an inevitable step is to deal with the integral $\int_Ω |u_t|^{m−2}u_tudx.$ A usual technique is to apply Young’s inequality and Sobolev embedding inequality to use the energy function and its derivative to control this integral for the subcritical or critical damping. However, for the supercritical case, the failure of the Sobolev embedding inequality makes the classical method be impossible. To do this, our strategy is to prove the rate of the integral $\int_Ω |u|^ mdx$ grows polynomially as a positive power of time variable $t$ and apply the modified multiplier method to obtain the energy functional decays logarithmically. These results improve and extend our previous work [12]. Finally, some numerical examples are also given to authenticate our results.
We are concerned with the following quasilinear wave equation involving variable sources and supercritical damping: $$u_{tt}-{\rm div}(|\nabla u|^{p(x)-2}\nabla u)+|u_t|^{m-2}u_t=|u|^{q(x)-2}u.$$ Generally speaking, when one tries to use the classical multiplier method to analyze the asymptotic behavior of solutions, an inevitable step is to deal with the integral $\int_Ω |u_t|^{m−2}u_tudx.$ A usual technique is to apply Young’s inequality and Sobolev embedding inequality to use the energy function and its derivative to control this integral for the subcritical or critical damping. However, for the supercritical case, the failure of the Sobolev embedding inequality makes the classical method be impossible. To do this, our strategy is to prove the rate of the integral $\int_Ω |u|^ mdx$ grows polynomially as a positive power of time variable $t$ and apply the modified multiplier method to obtain the energy functional decays logarithmically. These results improve and extend our previous work [12]. Finally, some numerical examples are also given to authenticate our results.