- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
On Linear Homogeneous Biwave Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-37-59,
author = {Bai , Yaqian},
title = {On Linear Homogeneous Biwave Equations},
journal = {Journal of Partial Differential Equations},
year = {2024},
volume = {37},
number = {1},
pages = {59--87},
abstract = {
The biwave maps are a class of fourth order hyperbolic equations. In this paper, we are interested in the solution formulas of the linear homogeneous biwave equations. Based on the solution formulas and the weighted energy estimate, we can obtain the $L^\infty(\mathbb R^n)-W^{N,1}(\mathbb R^n)$ and $L^\infty(\mathbb R^n)-W^{N,2}(\mathbb R^n)$ estimates, respectively. By our results, we find that the biwave maps enjoy some different properties compared with the standard wave equations.
},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v37.n1.4},
url = {http://global-sci.org/intro/article_detail/jpde/22906.html}
}
TY - JOUR
T1 - On Linear Homogeneous Biwave Equations
AU - Bai , Yaqian
JO - Journal of Partial Differential Equations
VL - 1
SP - 59
EP - 87
PY - 2024
DA - 2024/02
SN - 37
DO - http://doi.org/10.4208/jpde.v37.n1.4
UR - https://global-sci.org/intro/article_detail/jpde/22906.html
KW - Biwave maps, Duhamel’s principle, Fourier transform, Cauchy peoblem, deacy estimate.
AB -
The biwave maps are a class of fourth order hyperbolic equations. In this paper, we are interested in the solution formulas of the linear homogeneous biwave equations. Based on the solution formulas and the weighted energy estimate, we can obtain the $L^\infty(\mathbb R^n)-W^{N,1}(\mathbb R^n)$ and $L^\infty(\mathbb R^n)-W^{N,2}(\mathbb R^n)$ estimates, respectively. By our results, we find that the biwave maps enjoy some different properties compared with the standard wave equations.
Bai , Yaqian. (2024). On Linear Homogeneous Biwave Equations.
Journal of Partial Differential Equations. 37 (1).
59-87.
doi:10.4208/jpde.v37.n1.4
Copy to clipboard