- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
Let $W^{1,n} (\mathbb{R}^n)$ be the standard Sobolev space. For any $\tau>0$ and $p>n>2,$ we denote $$\lambda_{n,p}=\inf\limits_{u\in W^{1,n}(\mathbb{R}^n),\ u\not\equiv 0}\frac{\int_{\mathbb{R}^n}(|∇u|^n+\tau|u|^n)dx}{(\int_{\mathbb{R}^n}|u|^p dx)^{\frac{n}{p}}}. $$ Define a norm in $W^{1,n} (\mathbb{R}^n)$ by $$||u||_{n,p}=(\int_{\mathbb{R}^n}(|∇u|^n+\tau|u|^n)dx-\alpha(\int_{\mathbb{R}^n}|u|^pdx)^{\frac{n}{p}})^{\frac{1}{n}},$$ where $0 ≤ α < λ_{n,p}.$ Using a rearrangement argument and blow-up analysis, we will prove $$\sup\limits_{u\in W^{1,n}(\mathbb{R}^n), \ ||u||_{n,p}\le 1}\int_{\mathbb{R}^n}\left(e^{\alpha_n |u|^{\frac{n}{n-1}}}-\sum^{n-1}_{j=0}\frac{\alpha_n^j|u|^{\frac{jn}{n-1}}}{j!} \right)dx$$ can be attained by some function $u_0 ∈ W^{1,n} (\mathbb{R}^n )∩C^1 (\mathbb{R}^n)$ with $∥u_0∥_{n,p}= 1,$ here $α_n = nω ^{\frac{1}{ n−1}}_{n−1}$ and $ω_{n−1}$ is the measure of the unit sphere in $\mathbb{R}^n .$
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v36.n4.7}, url = {http://global-sci.org/intro/article_detail/jpde/22138.html} }Let $W^{1,n} (\mathbb{R}^n)$ be the standard Sobolev space. For any $\tau>0$ and $p>n>2,$ we denote $$\lambda_{n,p}=\inf\limits_{u\in W^{1,n}(\mathbb{R}^n),\ u\not\equiv 0}\frac{\int_{\mathbb{R}^n}(|∇u|^n+\tau|u|^n)dx}{(\int_{\mathbb{R}^n}|u|^p dx)^{\frac{n}{p}}}. $$ Define a norm in $W^{1,n} (\mathbb{R}^n)$ by $$||u||_{n,p}=(\int_{\mathbb{R}^n}(|∇u|^n+\tau|u|^n)dx-\alpha(\int_{\mathbb{R}^n}|u|^pdx)^{\frac{n}{p}})^{\frac{1}{n}},$$ where $0 ≤ α < λ_{n,p}.$ Using a rearrangement argument and blow-up analysis, we will prove $$\sup\limits_{u\in W^{1,n}(\mathbb{R}^n), \ ||u||_{n,p}\le 1}\int_{\mathbb{R}^n}\left(e^{\alpha_n |u|^{\frac{n}{n-1}}}-\sum^{n-1}_{j=0}\frac{\alpha_n^j|u|^{\frac{jn}{n-1}}}{j!} \right)dx$$ can be attained by some function $u_0 ∈ W^{1,n} (\mathbb{R}^n )∩C^1 (\mathbb{R}^n)$ with $∥u_0∥_{n,p}= 1,$ here $α_n = nω ^{\frac{1}{ n−1}}_{n−1}$ and $ω_{n−1}$ is the measure of the unit sphere in $\mathbb{R}^n .$