- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
In this paper, we study the discrete Morse flow for either Yamabe type heat flow or nonlinear heat flow on a bounded regular domain in the whole space. We show that under suitable assumptions on the initial data $g$ one has a weak approximate discrete Morse flow for the Yamabe type heat flow on any time interval. This phenomenon is very different from the smooth Yamabe flow, where the finite time blow up may exist.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v36.n1.3}, url = {http://global-sci.org/intro/article_detail/jpde/21292.html} }In this paper, we study the discrete Morse flow for either Yamabe type heat flow or nonlinear heat flow on a bounded regular domain in the whole space. We show that under suitable assumptions on the initial data $g$ one has a weak approximate discrete Morse flow for the Yamabe type heat flow on any time interval. This phenomenon is very different from the smooth Yamabe flow, where the finite time blow up may exist.