- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
Denote $$ {\cal K} _{\psi, \theta} (\Omega) =\left\{ v\in W^{1,p} (\Omega) : v\ge \psi, \mbox { a.e. and } v-\theta \in W_0^{1,p} (\Omega) \right\}, $$ where $\psi$ is any function in $\Omega \subset \mathbb R^N$, $N\ge 2$, with values in $\mathbb R \cup \{\pm \infty\}$ and $\theta $ is a measurable function. This paper deals with global integrability for $u \in {\cal K}_{\psi, \theta}$ such that
$$ \int_\Omega \langle {\cal A} (x,\nabla u), \nabla (w-u) \rangle {\rm d}x \ge \int_\Omega \langle F, \nabla (w-u) \rangle {\rm d}x, \ \ \forall\ w \in {\cal K}_{\psi,\theta} (\Omega), $$ with $|{\cal A} (x,\xi)| \approx |\xi| ^{p-1}$, $1<p<N$. Some global integrability results are obtained.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v35.n4.2}, url = {http://global-sci.org/intro/article_detail/jpde/21051.html} }Denote $$ {\cal K} _{\psi, \theta} (\Omega) =\left\{ v\in W^{1,p} (\Omega) : v\ge \psi, \mbox { a.e. and } v-\theta \in W_0^{1,p} (\Omega) \right\}, $$ where $\psi$ is any function in $\Omega \subset \mathbb R^N$, $N\ge 2$, with values in $\mathbb R \cup \{\pm \infty\}$ and $\theta $ is a measurable function. This paper deals with global integrability for $u \in {\cal K}_{\psi, \theta}$ such that
$$ \int_\Omega \langle {\cal A} (x,\nabla u), \nabla (w-u) \rangle {\rm d}x \ge \int_\Omega \langle F, \nabla (w-u) \rangle {\rm d}x, \ \ \forall\ w \in {\cal K}_{\psi,\theta} (\Omega), $$ with $|{\cal A} (x,\xi)| \approx |\xi| ^{p-1}$, $1<p<N$. Some global integrability results are obtained.