- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
In this paper, we study the barotropic Navier-Stokes-Langevin-Korteweg system in $\mathbb{R}^{3}$. Assuming the derivatives of the square root of the density and the velocity field decay to zero at infinity, we can prove the classical solutions blow up in finite time when the initial energy has a certain upper bound. We obtain this blow up result by a contradiction argument based on the conservation of the total mass and the total quasi momentum.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v35.n1.5}, url = {http://global-sci.org/intro/article_detail/jpde/19910.html} }In this paper, we study the barotropic Navier-Stokes-Langevin-Korteweg system in $\mathbb{R}^{3}$. Assuming the derivatives of the square root of the density and the velocity field decay to zero at infinity, we can prove the classical solutions blow up in finite time when the initial energy has a certain upper bound. We obtain this blow up result by a contradiction argument based on the conservation of the total mass and the total quasi momentum.