- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Stabilization for a Fourth Order Nonlinear Schrödinger Equation in Domains with Moving Boundaries
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-34-268,
author = {Vera Villagran , Octavio Paulo},
title = {Stabilization for a Fourth Order Nonlinear Schrödinger Equation in Domains with Moving Boundaries},
journal = {Journal of Partial Differential Equations},
year = {2021},
volume = {34},
number = {3},
pages = {268--283},
abstract = {
In the present paper we study the well-posedness using the Galerkin method and the stabilization considering multiplier techniques for a fourth-order nonlinear Schrödinger equation in domains with moving boundaries. We consider two situations for the stabilization: the conservative case and the dissipative case.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v34.n3.5}, url = {http://global-sci.org/intro/article_detail/jpde/19324.html} }
TY - JOUR
T1 - Stabilization for a Fourth Order Nonlinear Schrödinger Equation in Domains with Moving Boundaries
AU - Vera Villagran , Octavio Paulo
JO - Journal of Partial Differential Equations
VL - 3
SP - 268
EP - 283
PY - 2021
DA - 2021/07
SN - 34
DO - http://doi.org/10.4208/jpde.v34.n3.5
UR - https://global-sci.org/intro/article_detail/jpde/19324.html
KW - Nonlinear Schrödinger equation, moving boundary, stabilization.
AB -
In the present paper we study the well-posedness using the Galerkin method and the stabilization considering multiplier techniques for a fourth-order nonlinear Schrödinger equation in domains with moving boundaries. We consider two situations for the stabilization: the conservative case and the dissipative case.
Vera Villagran , Octavio Paulo. (2021). Stabilization for a Fourth Order Nonlinear Schrödinger Equation in Domains with Moving Boundaries.
Journal of Partial Differential Equations. 34 (3).
268-283.
doi:10.4208/jpde.v34.n3.5
Copy to clipboard