- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
In this paper a nonlinear Euler-Poisson-Darboux system is considered. In a first part, we proved the genericity of the hypergeometric functions in the development of exact solutions for such a system in some special cases leading to Bessel type differential equations. Next, a finite difference scheme in two-dimensional case has been developed. The continuous system is transformed into an algebraic quasi linear discrete one leading to generalized Lyapunov-Sylvester operators. The discrete algebraic system is proved to be uniquely solvable, stable and convergent based on Lyapunov criterion of stability and Lax-Richtmyer equivalence theorem for the convergence. A numerical example has been provided at the end to illustrate the efficiency of the numerical scheme developed in section 3. The present method is thus proved to be more accurate than existing ones and lead to faster algorithms.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v33.n4.2}, url = {http://global-sci.org/intro/article_detail/jpde/17862.html} }In this paper a nonlinear Euler-Poisson-Darboux system is considered. In a first part, we proved the genericity of the hypergeometric functions in the development of exact solutions for such a system in some special cases leading to Bessel type differential equations. Next, a finite difference scheme in two-dimensional case has been developed. The continuous system is transformed into an algebraic quasi linear discrete one leading to generalized Lyapunov-Sylvester operators. The discrete algebraic system is proved to be uniquely solvable, stable and convergent based on Lyapunov criterion of stability and Lax-Richtmyer equivalence theorem for the convergence. A numerical example has been provided at the end to illustrate the efficiency of the numerical scheme developed in section 3. The present method is thus proved to be more accurate than existing ones and lead to faster algorithms.