- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
The equation arising from Prandtl boundary layer theory $$\frac{\partial u}{\partial t} -\frac{\partial }{\partial x_i}\left( a(u,x,t)\frac{\partial u}{\partial x_i}\right)-f_i(x)D_iu+c(x,t)u=g(x,t)$$ is considered. The existence of the entropy solution can be proved by BV estimate method. The interesting problem is that, since $a(\cdot,x,t)$ may be degenerate on the boundary, the usual boundary value condition may be overdetermined. Accordingly, only dependent on a partial boundary value condition, the stability of solutions can be expected. This expectation is turned to reality by Kružkov's bi-variables method, a reasonable partial boundary value condition matching up with the equation is found first time. Moreover, if $a_{x_i}(\cdot,x,t)\mid_{x\in \partial \Omega}=a(\cdot,x,t)\mid_{x\in \partial \Omega}=0$ and $f_i(x)\mid_{x\in \partial \Omega}=0$, the stability can be proved even without any boundary value condition.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v33.n2.3}, url = {http://global-sci.org/intro/article_detail/jpde/16855.html} }The equation arising from Prandtl boundary layer theory $$\frac{\partial u}{\partial t} -\frac{\partial }{\partial x_i}\left( a(u,x,t)\frac{\partial u}{\partial x_i}\right)-f_i(x)D_iu+c(x,t)u=g(x,t)$$ is considered. The existence of the entropy solution can be proved by BV estimate method. The interesting problem is that, since $a(\cdot,x,t)$ may be degenerate on the boundary, the usual boundary value condition may be overdetermined. Accordingly, only dependent on a partial boundary value condition, the stability of solutions can be expected. This expectation is turned to reality by Kružkov's bi-variables method, a reasonable partial boundary value condition matching up with the equation is found first time. Moreover, if $a_{x_i}(\cdot,x,t)\mid_{x\in \partial \Omega}=a(\cdot,x,t)\mid_{x\in \partial \Omega}=0$ and $f_i(x)\mid_{x\in \partial \Omega}=0$, the stability can be proved even without any boundary value condition.