- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Explicit H1-Estimate for the Solution of the Lamé System with Mixed Boundary Conditions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-33-64,
author = {Ait-Akli , Djamel and Merakeb , Abdelkader},
title = {Explicit H1-Estimate for the Solution of the Lamé System with Mixed Boundary Conditions},
journal = {Journal of Partial Differential Equations},
year = {2020},
volume = {33},
number = {1},
pages = {64--92},
abstract = {
In this paper we consider the Lamé system on a polygonal convex domain with mixed boundary conditions of Dirichlet-Neumann type. An explicit $L^2$ norm estimate for the gradient of the solution of this problem is established. This leads to an explicit bound of the $H^1$ norm of this solution. Note that the obtained upper-bound is not optimal.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v33.n1.5}, url = {http://global-sci.org/intro/article_detail/jpde/15804.html} }
TY - JOUR
T1 - Explicit H1-Estimate for the Solution of the Lamé System with Mixed Boundary Conditions
AU - Ait-Akli , Djamel
AU - Merakeb , Abdelkader
JO - Journal of Partial Differential Equations
VL - 1
SP - 64
EP - 92
PY - 2020
DA - 2020/03
SN - 33
DO - http://doi.org/10.4208/jpde.v33.n1.5
UR - https://global-sci.org/intro/article_detail/jpde/15804.html
KW - Lamé system, Korn's inequality, Poincare's inequality, inequality of trace, explicit estimates.
AB -
In this paper we consider the Lamé system on a polygonal convex domain with mixed boundary conditions of Dirichlet-Neumann type. An explicit $L^2$ norm estimate for the gradient of the solution of this problem is established. This leads to an explicit bound of the $H^1$ norm of this solution. Note that the obtained upper-bound is not optimal.
Ait-Akli , Djamel and Merakeb , Abdelkader. (2020). Explicit H1-Estimate for the Solution of the Lamé System with Mixed Boundary Conditions.
Journal of Partial Differential Equations. 33 (1).
64-92.
doi:10.4208/jpde.v33.n1.5
Copy to clipboard