- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
In this paper we are concerned with a system of nonlinear integral equations on the exterior domain under the suitable boundary conditions. Through the method of moving planes in integral forms which has some innovative ideas we obtain that the exterior domain is radial symmetry and a pair of positive solutions of the system is radial symmetry and monotone non-decreasing. Consequently, we can obtain the corresponding Liouville type theorem about the solutions.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v32.n3.1}, url = {http://global-sci.org/intro/article_detail/jpde/13339.html} }In this paper we are concerned with a system of nonlinear integral equations on the exterior domain under the suitable boundary conditions. Through the method of moving planes in integral forms which has some innovative ideas we obtain that the exterior domain is radial symmetry and a pair of positive solutions of the system is radial symmetry and monotone non-decreasing. Consequently, we can obtain the corresponding Liouville type theorem about the solutions.