- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
This paper is concerned with the global well-posedness and regularity of weak solutions for the 2D non-autonomous incompressible Navier-Stokes equation with a inhomogeneous boundary condition in Lipschitz-like domain. Using the estimate for governing steady state equation and Hardy’s inequality, the existence and regularity of global unique weak solution can be proved. Moreover, these results also hold for 2D Navier-Stokes equation with Rayleigh’s friction and Navier-Stokes-Voigt flow, but invalid for three dimension.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v32.n1.6}, url = {http://global-sci.org/intro/article_detail/jpde/13124.html} }This paper is concerned with the global well-posedness and regularity of weak solutions for the 2D non-autonomous incompressible Navier-Stokes equation with a inhomogeneous boundary condition in Lipschitz-like domain. Using the estimate for governing steady state equation and Hardy’s inequality, the existence and regularity of global unique weak solution can be proved. Moreover, these results also hold for 2D Navier-Stokes equation with Rayleigh’s friction and Navier-Stokes-Voigt flow, but invalid for three dimension.