- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Properties for Nonlinear Fractional SubLaplace Equations on the Heisenberg Group
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-32-66,
author = {Wang , Xinjing and Niu , Pengcheng},
title = {Properties for Nonlinear Fractional SubLaplace Equations on the Heisenberg Group},
journal = {Journal of Partial Differential Equations},
year = {2019},
volume = {32},
number = {1},
pages = {66--76},
abstract = {
The aim of the paper is to study properties of solutions to the nonlinear fractional subLaplace equations on the Heisenberg group. Based on the method of moving planes to the Heisenberg group, we prove the Liouville property of solutions on a half space and the symmetry and monotonicity of the solutions on the whole group respectively.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v32.n1.5}, url = {http://global-sci.org/intro/article_detail/jpde/13123.html} }
TY - JOUR
T1 - Properties for Nonlinear Fractional SubLaplace Equations on the Heisenberg Group
AU - Wang , Xinjing
AU - Niu , Pengcheng
JO - Journal of Partial Differential Equations
VL - 1
SP - 66
EP - 76
PY - 2019
DA - 2019/04
SN - 32
DO - http://doi.org/10.4208/jpde.v32.n1.5
UR - https://global-sci.org/intro/article_detail/jpde/13123.html
KW - Heisenberg group
KW - fractional subLaplace equation
KW - method of moving planes.
AB -
The aim of the paper is to study properties of solutions to the nonlinear fractional subLaplace equations on the Heisenberg group. Based on the method of moving planes to the Heisenberg group, we prove the Liouville property of solutions on a half space and the symmetry and monotonicity of the solutions on the whole group respectively.
Wang , Xinjing and Niu , Pengcheng. (2019). Properties for Nonlinear Fractional SubLaplace Equations on the Heisenberg Group.
Journal of Partial Differential Equations. 32 (1).
66-76.
doi:10.4208/jpde.v32.n1.5
Copy to clipboard