- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Solvability of a Elliptic-Parabolic (Hyperbolic) Type Chemotaxis System in a Bounded Domain
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-31-322,
author = {Xu , Zijun},
title = {Solvability of a Elliptic-Parabolic (Hyperbolic) Type Chemotaxis System in a Bounded Domain},
journal = {Journal of Partial Differential Equations},
year = {2019},
volume = {31},
number = {4},
pages = {322--332},
abstract = {
In this paper, we use contraction mapping principle and operator-theoretic approach to establish local solvability of the elliptic-parabolic (hyperbolic) Type Chemotaxis System. In addition, global solvability of the systems is considered by some uniform estimates.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v31.n4.3}, url = {http://global-sci.org/intro/article_detail/jpde/12946.html} }
TY - JOUR
T1 - Solvability of a Elliptic-Parabolic (Hyperbolic) Type Chemotaxis System in a Bounded Domain
AU - Xu , Zijun
JO - Journal of Partial Differential Equations
VL - 4
SP - 322
EP - 332
PY - 2019
DA - 2019/01
SN - 31
DO - http://doi.org/10.4208/jpde.v31.n4.3
UR - https://global-sci.org/intro/article_detail/jpde/12946.html
KW - Elliptic-parabolic (hyperbolic) system
KW - chemotaxis model
KW - local existence
KW - global existence.
AB -
In this paper, we use contraction mapping principle and operator-theoretic approach to establish local solvability of the elliptic-parabolic (hyperbolic) Type Chemotaxis System. In addition, global solvability of the systems is considered by some uniform estimates.
Xu , Zijun. (2019). Solvability of a Elliptic-Parabolic (Hyperbolic) Type Chemotaxis System in a Bounded Domain.
Journal of Partial Differential Equations. 31 (4).
322-332.
doi:10.4208/jpde.v31.n4.3
Copy to clipboard