- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Semi-linear Elliptic Equations on Graph
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-30-221,
author = {Zhang , Dongshuang},
title = {Semi-linear Elliptic Equations on Graph},
journal = {Journal of Partial Differential Equations},
year = {2017},
volume = {30},
number = {3},
pages = {221--231},
abstract = { Let G=(V,E) be a locally finite graph, Ω ⊂ V be a finite connected set, Δ be the graph Laplacian, and suppose that h : V → R is a function satisfying the coercive condition on Ω, namely there exists some constant δ › 0 such that $$∫_Ωu(-Δ+h)udμ ≥ δ ∫_Ω|∇u|²dμ,\quad ∀u:V → R.$$ By the mountain-pass theoremof Ambrosette-Rabinowitz, we prove that for any p › 2, there exists a positive solution to $$-Δu+hu=|u|^{p-2}u\quad\;\; in\;\; Ω$$. Using the same method, we prove similar results for the p-Laplacian equations. This partly improves recent results of Grigor'yan-Lin-Yang.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v30.n3.3},
url = {http://global-sci.org/intro/article_detail/jpde/10466.html}
}
TY - JOUR
T1 - Semi-linear Elliptic Equations on Graph
AU - Zhang , Dongshuang
JO - Journal of Partial Differential Equations
VL - 3
SP - 221
EP - 231
PY - 2017
DA - 2017/08
SN - 30
DO - http://doi.org/10.4208/jpde.v30.n3.3
UR - https://global-sci.org/intro/article_detail/jpde/10466.html
KW - Sobolev embedding
KW - Yamabe type equation
KW - Laplacian on graph
AB - Let G=(V,E) be a locally finite graph, Ω ⊂ V be a finite connected set, Δ be the graph Laplacian, and suppose that h : V → R is a function satisfying the coercive condition on Ω, namely there exists some constant δ › 0 such that $$∫_Ωu(-Δ+h)udμ ≥ δ ∫_Ω|∇u|²dμ,\quad ∀u:V → R.$$ By the mountain-pass theoremof Ambrosette-Rabinowitz, we prove that for any p › 2, there exists a positive solution to $$-Δu+hu=|u|^{p-2}u\quad\;\; in\;\; Ω$$. Using the same method, we prove similar results for the p-Laplacian equations. This partly improves recent results of Grigor'yan-Lin-Yang.
Zhang , Dongshuang. (2017). Semi-linear Elliptic Equations on Graph.
Journal of Partial Differential Equations. 30 (3).
221-231.
doi:10.4208/jpde.v30.n3.3
Copy to clipboard