- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
The Reissner-Mindlin model is frequently used by engineers for plates and shells of small to moderate thickness. This model is well known for its "locking" phenomenon so that many numerical approximations behave poorly when the thickness parameter tends to zero. Following the formulation derived by Brezzi and Fortin, we construct a new finite element scheme for the Reissner-Mindlin model using $L^2$ projections onto appropriately-chosen finite element spaces. A superconvergence result is established for the new finite element solutions by using the $L^2$ projections. The superconvergence is based on some regularity assumption for the Reissner-Mindlin model and is applicable to any stable finite element methods with regular but non-uniform finite element partitions.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/968.html} }The Reissner-Mindlin model is frequently used by engineers for plates and shells of small to moderate thickness. This model is well known for its "locking" phenomenon so that many numerical approximations behave poorly when the thickness parameter tends to zero. Following the formulation derived by Brezzi and Fortin, we construct a new finite element scheme for the Reissner-Mindlin model using $L^2$ projections onto appropriately-chosen finite element spaces. A superconvergence result is established for the new finite element solutions by using the $L^2$ projections. The superconvergence is based on some regularity assumption for the Reissner-Mindlin model and is applicable to any stable finite element methods with regular but non-uniform finite element partitions.