- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
The aim of this paper is to present a general algorithm for the branching solution of nonlinear operator equations in a Hilbert space, namely the $k$-order Taylor expansion algorithm, $k \geq 1$. The standard Galerkin method can be viewed as the 1-order Taylor expansion algorithm; while the optimum nonlinear Galerkin method can be viewed as the 2-order Taylor expansion algorithm. The general algorithm is then applied to the study of the numerical approximations for the steady Navier-Stokes equations. Finally, the theoretical analysis and numerical experiments show that, in some situations, the optimum nonlinear Galerkin method provides higher convergence rate than the standard Galerkin method and the nonlinear Galerkin method.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/941.html} }The aim of this paper is to present a general algorithm for the branching solution of nonlinear operator equations in a Hilbert space, namely the $k$-order Taylor expansion algorithm, $k \geq 1$. The standard Galerkin method can be viewed as the 1-order Taylor expansion algorithm; while the optimum nonlinear Galerkin method can be viewed as the 2-order Taylor expansion algorithm. The general algorithm is then applied to the study of the numerical approximations for the steady Navier-Stokes equations. Finally, the theoretical analysis and numerical experiments show that, in some situations, the optimum nonlinear Galerkin method provides higher convergence rate than the standard Galerkin method and the nonlinear Galerkin method.