- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We investigate the Korn first inequality for quadrilateral nonconforming finite elements of first order approximation properties and clarify the dependence of the constant in this inequality on the discretization parameter $h$. Then we use the nonconforming elements for approximating the velocity in a discretization of the Stokes equations with boundary conditions involving surface forces and, using the result on the Korn inequality, we prove error estimates which are optimal for the pressure and suboptimal for the velocity.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/940.html} }We investigate the Korn first inequality for quadrilateral nonconforming finite elements of first order approximation properties and clarify the dependence of the constant in this inequality on the discretization parameter $h$. Then we use the nonconforming elements for approximating the velocity in a discretization of the Stokes equations with boundary conditions involving surface forces and, using the result on the Korn inequality, we prove error estimates which are optimal for the pressure and suboptimal for the velocity.