- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider mixed finite elements discretizations of a class of Quasi-Newtonian Stokes flow problem. Unified a posteriori error estimator for conforming, nonconforming, with or without stabilization is obtained. We prove, without Helmholtz decomposition of the error, nor regularity and saturation assumptions, the reliability and the efficiency of our estimator.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/930.html} }In this paper, we consider mixed finite elements discretizations of a class of Quasi-Newtonian Stokes flow problem. Unified a posteriori error estimator for conforming, nonconforming, with or without stabilization is obtained. We prove, without Helmholtz decomposition of the error, nor regularity and saturation assumptions, the reliability and the efficiency of our estimator.