- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We propose a variant of variable preconditioning for Generalized Conjugate Residual (CCR)-like methods. The preconditioning is carried out by roughly solving $Az = v$ by an iterative method to a certain degree of accuracy instead of computing $Kz = v$ in a conventional preconditioned algorithm. In our proposal, the number of iterations required for computing $Az = v$ is changed at each iteration by establishing a stopping criterion. This enables the use of a stationary iterative method when applying different preconditioners. The proposed procedure is incorporated into GCR, and the mathematical convergence is proved. In numerical experiments, we employ the Successive Over-Relaxation (SOR) method for computing $Az = v$, and we demonstrate that GCR with the variable preconditioning using SOR is faster and more robust than GCR with an incomplete LU preconditioning, and the FGMRES and GMRESR methods with the variable preconditioning using the Generalized Minimal Residual (GMRES) method. Moreover, we confirm that different preconditioners are applied at each iteration.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/926.html} }We propose a variant of variable preconditioning for Generalized Conjugate Residual (CCR)-like methods. The preconditioning is carried out by roughly solving $Az = v$ by an iterative method to a certain degree of accuracy instead of computing $Kz = v$ in a conventional preconditioned algorithm. In our proposal, the number of iterations required for computing $Az = v$ is changed at each iteration by establishing a stopping criterion. This enables the use of a stationary iterative method when applying different preconditioners. The proposed procedure is incorporated into GCR, and the mathematical convergence is proved. In numerical experiments, we employ the Successive Over-Relaxation (SOR) method for computing $Az = v$, and we demonstrate that GCR with the variable preconditioning using SOR is faster and more robust than GCR with an incomplete LU preconditioning, and the FGMRES and GMRESR methods with the variable preconditioning using the Generalized Minimal Residual (GMRES) method. Moreover, we confirm that different preconditioners are applied at each iteration.