- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Superconvergence Studies of Quadrilateral Nonconforming Rotated Q1 Elements
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{IJNAM-3-322,
author = {P. Ming, Z. Shi and Y. Xu},
title = {Superconvergence Studies of Quadrilateral Nonconforming Rotated Q1 Elements},
journal = {International Journal of Numerical Analysis and Modeling},
year = {2006},
volume = {3},
number = {3},
pages = {322--332},
abstract = {
For the nonconforming rotated $Q_1$ element over a mildly distorted quadrilateral mesh, we propose a superconvergence property at the element center, the vertices and the midpoints of four edges. Numerics are presented to confirm this observation.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/904.html} }
TY - JOUR
T1 - Superconvergence Studies of Quadrilateral Nonconforming Rotated Q1 Elements
AU - P. Ming, Z. Shi & Y. Xu
JO - International Journal of Numerical Analysis and Modeling
VL - 3
SP - 322
EP - 332
PY - 2006
DA - 2006/03
SN - 3
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/ijnam/904.html
KW - superconvergence, nonconforming rotated $Q_1$ element, Kershaw mesh.
AB -
For the nonconforming rotated $Q_1$ element over a mildly distorted quadrilateral mesh, we propose a superconvergence property at the element center, the vertices and the midpoints of four edges. Numerics are presented to confirm this observation.
P. Ming, Z. Shi and Y. Xu. (2006). Superconvergence Studies of Quadrilateral Nonconforming Rotated Q1 Elements.
International Journal of Numerical Analysis and Modeling. 3 (3).
322-332.
doi:
Copy to clipboard