- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper we consider superconvergence and supercloseness in the least-squares mixed finite element method for elliptic problems. The supercloseness is with respect to the standard and mixed finite element approximations of the same elliptic problem, and does not depend on the properties of the mesh. As an application, we will derive more precise a priori bounds for the least squares mixed method. The superconvergence may be used to define a posteriori error estimators in the usual way. As a by-product of the analysis, a strengthened Cauchy-Buniakowskii-Schwarz inequality is used to prove the coercivity of the least-squares mixed bilinear form in a straight-forward manner. Using the same inequality, it can moreover be shown that the least-squares mixed finite element linear system of equations can basically be solved with one single iteration step of the Block Jacobi method.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/902.html} }In this paper we consider superconvergence and supercloseness in the least-squares mixed finite element method for elliptic problems. The supercloseness is with respect to the standard and mixed finite element approximations of the same elliptic problem, and does not depend on the properties of the mesh. As an application, we will derive more precise a priori bounds for the least squares mixed method. The superconvergence may be used to define a posteriori error estimators in the usual way. As a by-product of the analysis, a strengthened Cauchy-Buniakowskii-Schwarz inequality is used to prove the coercivity of the least-squares mixed bilinear form in a straight-forward manner. Using the same inequality, it can moreover be shown that the least-squares mixed finite element linear system of equations can basically be solved with one single iteration step of the Block Jacobi method.