arrow
Volume 3, Issue 1
$hp$-Version Interior Penalty Discontinuous Galerkin Finite Element Methods on Anisotropic Meshes

Emmanuil H. Georgoulis

Int. J. Numer. Anal. Mod., 3 (2006), pp. 52-79.

Published online: 2006-03

Export citation
  • Abstract

We consider the $hp$-version interior penalty discontinuous Galerkin finite element method ($hp$-DGFEM) for linear second-order elliptic reaction-diffusion-advection equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the extension of the error analysis of the $hp$-DGFEM to the case when anisotropic (shape-irregular) elements and anisotropic polynomial degrees are used. For this purpose, extensions of well known approximation theory results are derived. In particular, new error bounds for the approximation error of the $L^2$-and $H^1$-projection operators are presented, as well as generalizations of existing inverse inequalities to the anisotropic setting. Equipped with these theoretical developments, we derive general error bounds for the $hp$-DGFEM on anisotropic meshes, and anisotropic polynomial degrees. Moreover, an improved choice for the (user-defined) discontinuity-penalisation parameter of the method is proposed, which takes into account the anisotropy of the mesh. These results collapse to previously known ones when applied to problems on shape-regular elements. The theoretical findings are justified by numerical experiments, indicating that the use of anisotropic elements, together with our newly suggested choice of the discontinuity-penalisation parameter, improves the stability, the accuracy and the efficiency of the method.

  • AMS Subject Headings

65N12, 65N15, 65N30

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{IJNAM-3-52, author = {Georgoulis , Emmanuil H.}, title = {$hp$-Version Interior Penalty Discontinuous Galerkin Finite Element Methods on Anisotropic Meshes}, journal = {International Journal of Numerical Analysis and Modeling}, year = {2006}, volume = {3}, number = {1}, pages = {52--79}, abstract = {

We consider the $hp$-version interior penalty discontinuous Galerkin finite element method ($hp$-DGFEM) for linear second-order elliptic reaction-diffusion-advection equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the extension of the error analysis of the $hp$-DGFEM to the case when anisotropic (shape-irregular) elements and anisotropic polynomial degrees are used. For this purpose, extensions of well known approximation theory results are derived. In particular, new error bounds for the approximation error of the $L^2$-and $H^1$-projection operators are presented, as well as generalizations of existing inverse inequalities to the anisotropic setting. Equipped with these theoretical developments, we derive general error bounds for the $hp$-DGFEM on anisotropic meshes, and anisotropic polynomial degrees. Moreover, an improved choice for the (user-defined) discontinuity-penalisation parameter of the method is proposed, which takes into account the anisotropy of the mesh. These results collapse to previously known ones when applied to problems on shape-regular elements. The theoretical findings are justified by numerical experiments, indicating that the use of anisotropic elements, together with our newly suggested choice of the discontinuity-penalisation parameter, improves the stability, the accuracy and the efficiency of the method.

}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/889.html} }
TY - JOUR T1 - $hp$-Version Interior Penalty Discontinuous Galerkin Finite Element Methods on Anisotropic Meshes AU - Georgoulis , Emmanuil H. JO - International Journal of Numerical Analysis and Modeling VL - 1 SP - 52 EP - 79 PY - 2006 DA - 2006/03 SN - 3 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/ijnam/889.html KW - discontinuous Galerkin, finite element methods, anisotropic meshes, equations with non-negative characteristics form. AB -

We consider the $hp$-version interior penalty discontinuous Galerkin finite element method ($hp$-DGFEM) for linear second-order elliptic reaction-diffusion-advection equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the extension of the error analysis of the $hp$-DGFEM to the case when anisotropic (shape-irregular) elements and anisotropic polynomial degrees are used. For this purpose, extensions of well known approximation theory results are derived. In particular, new error bounds for the approximation error of the $L^2$-and $H^1$-projection operators are presented, as well as generalizations of existing inverse inequalities to the anisotropic setting. Equipped with these theoretical developments, we derive general error bounds for the $hp$-DGFEM on anisotropic meshes, and anisotropic polynomial degrees. Moreover, an improved choice for the (user-defined) discontinuity-penalisation parameter of the method is proposed, which takes into account the anisotropy of the mesh. These results collapse to previously known ones when applied to problems on shape-regular elements. The theoretical findings are justified by numerical experiments, indicating that the use of anisotropic elements, together with our newly suggested choice of the discontinuity-penalisation parameter, improves the stability, the accuracy and the efficiency of the method.

Georgoulis , Emmanuil H.. (2006). $hp$-Version Interior Penalty Discontinuous Galerkin Finite Element Methods on Anisotropic Meshes. International Journal of Numerical Analysis and Modeling. 3 (1). 52-79. doi:
Copy to clipboard
The citation has been copied to your clipboard