- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We consider the $hp$-version interior penalty discontinuous Galerkin finite element method ($hp$-DGFEM) for linear second-order elliptic reaction-diffusion-advection equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the extension of the error analysis of the $hp$-DGFEM to the case when anisotropic (shape-irregular) elements and anisotropic polynomial degrees are used. For this purpose, extensions of well known approximation theory results are derived. In particular, new error bounds for the approximation error of the $L^2$-and $H^1$-projection operators are presented, as well as generalizations of existing inverse inequalities to the anisotropic setting. Equipped with these theoretical developments, we derive general error bounds for the $hp$-DGFEM on anisotropic meshes, and anisotropic polynomial degrees. Moreover, an improved choice for the (user-defined) discontinuity-penalisation parameter of the method is proposed, which takes into account the anisotropy of the mesh. These results collapse to previously known ones when applied to problems on shape-regular elements. The theoretical findings are justified by numerical experiments, indicating that the use of anisotropic elements, together with our newly suggested choice of the discontinuity-penalisation parameter, improves the stability, the accuracy and the efficiency of the method.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/889.html} }We consider the $hp$-version interior penalty discontinuous Galerkin finite element method ($hp$-DGFEM) for linear second-order elliptic reaction-diffusion-advection equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the extension of the error analysis of the $hp$-DGFEM to the case when anisotropic (shape-irregular) elements and anisotropic polynomial degrees are used. For this purpose, extensions of well known approximation theory results are derived. In particular, new error bounds for the approximation error of the $L^2$-and $H^1$-projection operators are presented, as well as generalizations of existing inverse inequalities to the anisotropic setting. Equipped with these theoretical developments, we derive general error bounds for the $hp$-DGFEM on anisotropic meshes, and anisotropic polynomial degrees. Moreover, an improved choice for the (user-defined) discontinuity-penalisation parameter of the method is proposed, which takes into account the anisotropy of the mesh. These results collapse to previously known ones when applied to problems on shape-regular elements. The theoretical findings are justified by numerical experiments, indicating that the use of anisotropic elements, together with our newly suggested choice of the discontinuity-penalisation parameter, improves the stability, the accuracy and the efficiency of the method.