- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We consider the Stokes-Oldroyd equations, defined here as the Stokes equations with the Newtonian constitutive equation explicitly included. Thus a polymer-like stress tensor is included so that the dependent variable structure of a viscoelastic model is in place. The energy equation is coupled with the mass, momentum, and constitutive equations through the use of temperature-dependent viscosity terms in both the constitutive model and the momentum equation. Earlier works assumed temperature-dependent constitutive (polymer) and Newtonian (solvent) viscosities when describing the model equations, but made the simplifying assumption of a constant solvent viscosity when carrying out analysis and computations; we assume no such simplification. Our analysis coupled with numerical solution of the problem with both temperature-dependent viscosities distinguishes this work from earlier efforts.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/870.html} }We consider the Stokes-Oldroyd equations, defined here as the Stokes equations with the Newtonian constitutive equation explicitly included. Thus a polymer-like stress tensor is included so that the dependent variable structure of a viscoelastic model is in place. The energy equation is coupled with the mass, momentum, and constitutive equations through the use of temperature-dependent viscosity terms in both the constitutive model and the momentum equation. Earlier works assumed temperature-dependent constitutive (polymer) and Newtonian (solvent) viscosities when describing the model equations, but made the simplifying assumption of a constant solvent viscosity when carrying out analysis and computations; we assume no such simplification. Our analysis coupled with numerical solution of the problem with both temperature-dependent viscosities distinguishes this work from earlier efforts.