- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [12]. A least-squares method is presented here for mesh tying in the presence of gaps and overlaps. The least-squares formulation for transmission problems [5] is extended to settings where subdomain boundaries are not spatially coincident. The new method is consistent in the sense that it recovers exactly global polynomial solutions that are in the finite element space. As a result, the least-squares mesh tying method passes a patch test of the order of the finite element space by construction. This attractive computational property is illustrated by numerical experiments.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/865.html} }In the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [12]. A least-squares method is presented here for mesh tying in the presence of gaps and overlaps. The least-squares formulation for transmission problems [5] is extended to settings where subdomain boundaries are not spatially coincident. The new method is consistent in the sense that it recovers exactly global polynomial solutions that are in the finite element space. As a result, the least-squares mesh tying method passes a patch test of the order of the finite element space by construction. This attractive computational property is illustrated by numerical experiments.