- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Foundation of Fast Non-Linear Finite Element Solvers, Part II
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{IJNAM-4-241,
author = {Shi , Peter L.},
title = {Foundation of Fast Non-Linear Finite Element Solvers, Part II},
journal = {International Journal of Numerical Analysis and Modeling},
year = {2007},
volume = {4},
number = {2},
pages = {241--279},
abstract = {
The author establishes a finite element solver algorithm of optimal speed for a class of quasi-linear equations with large stiffness variations and oscillations. In particular, the algorithm can successfully handle soft inclusions of negative stiffness. Besides the convergence analysis, large number of numerical examples are presented.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/861.html} }
TY - JOUR
T1 - Foundation of Fast Non-Linear Finite Element Solvers, Part II
AU - Shi , Peter L.
JO - International Journal of Numerical Analysis and Modeling
VL - 2
SP - 241
EP - 279
PY - 2007
DA - 2007/04
SN - 4
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/ijnam/861.html
KW - finite elements, non-linear solver algorithm, optimal speed.
AB -
The author establishes a finite element solver algorithm of optimal speed for a class of quasi-linear equations with large stiffness variations and oscillations. In particular, the algorithm can successfully handle soft inclusions of negative stiffness. Besides the convergence analysis, large number of numerical examples are presented.
Shi , Peter L.. (2007). Foundation of Fast Non-Linear Finite Element Solvers, Part II.
International Journal of Numerical Analysis and Modeling. 4 (2).
241-279.
doi:
Copy to clipboard