- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We derive error estimates for fully discrete scheme using primal discontinuous Galerkin discretization in space and backward Euler discretization in time. The estimates in the energy norm are optimal with respect to the mesh size and suboptimal with respect to the polynomial degree. The proposed scheme is of high order as polynomial approximations of pressure and concentration can take any degree. In addition, the method can handle different types of boundary conditions and is well-suited for unstructured meshes.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/839.html} }We derive error estimates for fully discrete scheme using primal discontinuous Galerkin discretization in space and backward Euler discretization in time. The estimates in the energy norm are optimal with respect to the mesh size and suboptimal with respect to the polynomial degree. The proposed scheme is of high order as polynomial approximations of pressure and concentration can take any degree. In addition, the method can handle different types of boundary conditions and is well-suited for unstructured meshes.