- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
Many situations of physical and biological interest involve diffusions on manifolds. It is usually assumed that irregularities in the geometry of these manifolds do not influence diffusions. The validity of this assumption is put to the test by studying Brownian motions on nearly flat 2D surfaces. It is found by perturbative calculations that irregularities in the geometry have a cumulative and drastic influence on diffusions, and that this influence typically grows exponentially with time. The corresponding characteristic times are computed and discussed. Conditional entropies and their growth rates are considered too.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/838.html} }Many situations of physical and biological interest involve diffusions on manifolds. It is usually assumed that irregularities in the geometry of these manifolds do not influence diffusions. The validity of this assumption is put to the test by studying Brownian motions on nearly flat 2D surfaces. It is found by perturbative calculations that irregularities in the geometry have a cumulative and drastic influence on diffusions, and that this influence typically grows exponentially with time. The corresponding characteristic times are computed and discussed. Conditional entropies and their growth rates are considered too.