- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, we discuss the boundary value problem for the linear elastic equations in a perforated domain $\Omega^{\varepsilon}$. We fill all holes with a very compliant material, then we study the homogenization method and the multiscale analysis for the associated multiphase problem in a domain $\Omega$ without holes. We are interested in the asymptotic behavior of the solution for the multiphase problem as the material properties of one weak phase go to zero, which has a wide range of applications in shape optimization and in 3-D mesh generation. The main contribution obtained in this paper is to give a full mathematical justification for this limiting process in general senses. Finally, some numerical results are presented, which support strongly the theoretical results of this paper.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/829.html} }In this paper, we discuss the boundary value problem for the linear elastic equations in a perforated domain $\Omega^{\varepsilon}$. We fill all holes with a very compliant material, then we study the homogenization method and the multiscale analysis for the associated multiphase problem in a domain $\Omega$ without holes. We are interested in the asymptotic behavior of the solution for the multiphase problem as the material properties of one weak phase go to zero, which has a wide range of applications in shape optimization and in 3-D mesh generation. The main contribution obtained in this paper is to give a full mathematical justification for this limiting process in general senses. Finally, some numerical results are presented, which support strongly the theoretical results of this paper.